It's accurate, inexpensive and you can connect many of them in parallel without using more than one digital input on the Arduino board.
They come in several variants: probe, individual, brick and a waterproof version.
You will also need a small pull-up resistor to make the circuit work. It is usually around 4,7kOhm.
Wiring Things Up
Start by connecting the radio module.
Sensor | Arduino | Comment |
---|---|---|
GND (left pin) | GND | Marked black |
VCC (right pin) | VCC (3.0-5.5V) | Marked red |
DQ (middle pin) | Digital pin 3 | Marked green |
Mount a 4.7kOhm (4k7) resistor between VCC and Digital pin 3
Example
This example uses a modified version of the external DallasTemperature library, which is included in the MySensors external examples. Please install it and restart the Arduino IDE before trying to compile.
/**
* The MySensors Arduino library handles the wireless radio link and protocol
* between your home built sensors/actuators and HA controller of choice.
* The sensors forms a self healing radio network with optional repeaters. Each
* repeater and gateway builds a routing tables in EEPROM which keeps track of the
* network topology allowing messages to be routed to nodes.
*
* Created by Henrik Ekblad <[email protected]>
* Copyright (C) 2013-2015 Sensnology AB
* Full contributor list: https://github.com/mysensors/Arduino/graphs/contributors
*
* Documentation: http://www.mysensors.org
* Support Forum: http://forum.mysensors.org
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
*******************************
*
* DESCRIPTION
*
* Example sketch showing how to send in DS1820B OneWire temperature readings back to the controller
* http://www.mysensors.org/build/temp
*/
// Enable debug prints to serial monitor
//#define MY_DEBUG
// Enable and select radio type attached
#define MY_RADIO_RF24
//#define MY_RADIO_RFM69
#include <MySensors.h>
#include <DallasTemperature.h>
#include <OneWire.h>
#define COMPARE_TEMP 1 // Send temperature only if changed? 1 = Yes 0 = No
#define ONE_WIRE_BUS 3 // Pin where dallase sensor is connected
#define MAX_ATTACHED_DS18B20 16
unsigned long SLEEP_TIME = 30000; // Sleep time between reads (in milliseconds)
OneWire oneWire(ONE_WIRE_BUS); // Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs)
DallasTemperature sensors(&oneWire); // Pass the oneWire reference to Dallas Temperature.
float lastTemperature[MAX_ATTACHED_DS18B20];
int numSensors=0;
bool receivedConfig = false;
bool metric = true;
// Initialize temperature message
MyMessage msg(0,V_TEMP);
void before()
{
// Startup up the OneWire library
sensors.begin();
}
void setup()
{
// requestTemperatures() will not block current thread
sensors.setWaitForConversion(false);
}
void presentation() {
// Send the sketch version information to the gateway and Controller
sendSketchInfo("Temperature Sensor", "1.1");
// Fetch the number of attached temperature sensors
numSensors = sensors.getDeviceCount();
// Present all sensors to controller
for (int i=0; i<numSensors && i<MAX_ATTACHED_DS18B20; i++) {
present(i, S_TEMP);
}
}
void loop()
{
// Fetch temperatures from Dallas sensors
sensors.requestTemperatures();
// query conversion time and sleep until conversion completed
int16_t conversionTime = sensors.millisToWaitForConversion(sensors.getResolution());
// sleep() call can be replaced by wait() call if node need to process incoming messages (or if node is repeater)
sleep(conversionTime);
// Read temperatures and send them to controller
for (int i=0; i<numSensors && i<MAX_ATTACHED_DS18B20; i++) {
// Fetch and round temperature to one decimal
float temperature = static_cast<float>(static_cast<int>((getControllerConfig().isMetric?sensors.getTempCByIndex(i):sensors.getTempFByIndex(i)) * 10.)) / 10.;
// Only send data if temperature has changed and no error
#if COMPARE_TEMP == 1
if (lastTemperature[i] != temperature && temperature != -127.00 && temperature != 85.00) {
#else
if (temperature != -127.00 && temperature != 85.00) {
#endif
// Send in the new temperature
send(msg.setSensor(i).set(temperature,1));
// Save new temperatures for next compare
lastTemperature[i]=temperature;
}
}
sleep(SLEEP_TIME);
}